Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Bivalves are becoming an increasingly popular tool to counteract eutrophication, particularly in vegetated coastal ecosystems where synergistic interactions between bivalves and plants can govern important N sequestration pathways. In turn, new calls to evaluate how bivalve densities modify N pools and processes across multiple scales have surfaced.Ribbed mussels,Geukensia demissa, and their relationship with smooth cordgrass present a classic demonstration of positive bivalve‐plant interactions and offer a useful model for assessing density dependence. We measure porewater ammonium concentrations, N stable isotope signatures in cordgrass tissue, and sediment N fluxes in mussel aggregations and in cordgrass‐only plots across a southeastern U.S. salt marsh.In addition to measuring the effect of mussel presence, we evaluate mussel density dependence through a multiscale approach. At the patch scale, we quantify mussel density effects within their aggregations (individuals m−2) while at a larger landscape scale, we quantify mussel density effects on the cordgrass‐only areas they neighbour (individuals ~30 m−2).Porewater ammonium concentrations were halved in mussel biodeposits relative to sediments in cordgrass‐only areas and negatively related to mussel density within aggregations. Leaf clip ẟ15N signatures were nearly 2‰ higher in cordgrass growing among mussel aggregations and increased with increasing patch mussel density. Microcosm incubations showed that mussels enhanced N2flux (i.e., nitrogen removal) and DIN flux (i.e., N regeneration) into the water column, where only nitrogen removal increased with increasing patch‐scale mussel density. Across the marsh landscape, mussel coverage drove ammonium accumulation and N2flux in sediments.Synthesis. Our results suggest that, at the patch scale, mussels stimulate the microbial metabolism of N, the assimilation of this bioavailable N by cordgrass, and nitrogen removal in a positive, density‐dependent manner. Tidal currents redistribute mussel biodeposits from mussel aggregations to surrounding areas, influencing biogeochemical transformations at scales beyond their physical footprint. We emphasize that the N regeneration potential of bivalve populations is a significant metric contributing to their mitigation potential and that bivalve density effects may be non‐linear, vary across patch to ecosystem scales, and have differing implications for the plants with which they interact.more » « less
-
Abstract The fate of coastal ecosystems depends on their ability to keep pace with sea-level rise—yet projections of accretion widely ignore effects of engineering fauna. Here, we quantify effects of the mussel , Geukensia demissa , on southeastern US saltmarsh accretion. Multi-season and -tidal stage surveys, in combination with field experiments, reveal that deposition is 2.8-10.7-times greater on mussel aggregations than any other marsh location. Our Delft-3D-BIVALVES model further predicts that mussels drive substantial changes to both the magnitude (±<0.1 cm·yr −1 ) and spatial patterning of accretion at marsh domain scales. We explore the validity of model predictions with a multi-year creekshed mussel manipulation of >200,000 mussels and find that this faunal engineer drives far greater changes to relative marsh accretion rates than predicted (±>0.4 cm·yr −1 ). Thus, we highlight an urgent need for empirical, experimental, and modeling work to resolve the importance of faunal engineers in directly and indirectly modifying the persistence of coastal ecosystems globally.more » « less
-
Restoration efforts have been escalating worldwide in response to widespread habitat degradation. However, coastal restoration attempts notoriously vary in their ability to establish resilient, high-functioning ecosystems. Conventional restoration attempts disperse transplants in competition-minimizing arrays, yet recent studies suggest that clumping transplants to maximize facilitative interactions may improve restoration success. Here, we modify the stress gradient hypothesis to generate predictions about where each restoration design will perform best across environmental stress gradients. We then test this conceptual model with field experiments manipulating transplant density and configuration across dune elevations and latitudes. In hurricane-damaged Georgia (USA) dunes, grass transplanted in competition-minimizing (low-density, dispersed) arrays exhibited the highest growth, resilience to disturbance and dune formation in low-stress conditions. In contrast, transplants survived best in facilitation-maximizing (high-density, clumped) arrays in high-stress conditions, but these benefits did not translate to higher transplant growth or resilience. In a parallel experiment in Massachusetts where dune grasses experience frequent saltwater inundation, fewer transplants survived, suggesting that there are thresholds above which intraspecific facilitation cannot overcome local stressors. These results suggest that ecological theory can be used to guide restoration strategies based on local stress regimes, maximizing potential restoration success and return-on-investment of future efforts.more » « less
An official website of the United States government
